Propagating Waves in Human Motor Cortex
نویسندگان
چکیده
Previous studies in non-human primates (NHPs) have shown that beta oscillations (15-30 Hz) of local field potentials (LFPs) in the arm/hand areas of primary motor cortex (MI) propagate as traveling waves across the cortex. These waves exhibited two stereotypical features across animals and tasks: (1) The waves propagated in two dominant modal directions roughly 180° apart, and (2) their propagation speed ranged from 10 to 35 cm/s. It is, however, unknown if such cortical waves occur in the human motor cortex. This study shows that the two properties of propagating beta waves are present in MI of a tetraplegic human patient while he was instructed to perform an instruction delay center-out task using a cursor controlled by the chin. Moreover, we show that beta waves are sustained and have similar properties whether the subject was engaged in the task or at rest. The directions of the successive sustained waves both in the human subject and a NHP subject tended to switch from one dominant mode to the other, and at least in the NHP subject the estimated distance traveled between successive waves traveling into and out of the central sulcus is consistent with the hypothesis of wave reflection between the border of motor and somatosensory cortices. Further, we show that the occurrence of the beta waves is not uniquely tied to periods of increased power in the beta frequency band. These results demonstrate that traveling beta waves in MI are a general phenomenon occurring in human as well as NHPs. Consistent with the NHP data, the dominant directions of the beta LFP waves in human aligned to the proximal to distal gradient of joint representations in MI somatotopy. This consistent finding of wave propagation may imply the existence of a hardwired organization of motor cortex that mediates this spatiotemporal pattern.
منابع مشابه
Optogenetic Stimulation Shifts the Excitability of Cerebral Cortex from Type I to Type II: Oscillation Onset and Wave Propagation
Constant optogenetic stimulation targeting both pyramidal cells and inhibitory interneurons has recently been shown to elicit propagating waves of gamma-band (40-80 Hz) oscillations in the local field potential of non-human primate motor cortex. The oscillations emerge with non-zero frequency and small amplitude-the hallmark of a type II excitable medium-yet they also propagate far beyond the s...
متن کاملDifferential Cortical Oscillatory Patterns in Amputees with and Without Phantom Limb Pain
Objective: Phantom limb pain (PLP) as neuropathic pain affects the life of amputees. It is believed an efficient PLP treatment should consider the underlying neurological mechanisms. Hereby, we investigated brain activity in PLP’s and relations to the psychological and cognitive dimension of chronic pain. We investigate differences in resting brain activities between amputees with and without p...
متن کاملSeismic Behavior of 2D Semi-Sine Shaped Hills against Vertically Propagating Incident Waves
This paper presents the preliminary results of an extensive parametric study on seismic response of two-dimensional semi-sine shaped hills to vertically propagating incident P- and SV-waves. Clear perspectives of the induced diffraction and amplification patterns are given by investigation of time-domain and frequency-domain responses. It is shown that site geometry, wave characteristics , and ...
متن کاملThe stimulus-evoked population response in visual cortex of awake monkey is a propagating wave
Propagating waves occur in many excitable media and were recently found in neural systems from retina to neocortex. While propagating waves are clearly present under anaesthesia, whether they also appear during awake and conscious states remains unclear. One possibility is that these waves are systematically missed in trial-averaged data, due to variability. Here we present a method for detecti...
متن کاملPropagating Waves in Visual Cortex
Spatiotemporal patterns of cortical activation occur superimposed upon sensory, motor, and cognitive maps. The papers by Benucci et al. and Xu et al. in this issue of Neuron demonstrate that visual responses propagate in space and may serve to link different visual areas. This is an important step toward understanding how cortical maps relate to activation patterns, a prerequisite to understand...
متن کامل